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1ABSTRACT—Devices that respond to radiation on 
a cell level will produce distributions showing the relative 
frequency of cell response to radiation damage, i.e., a 
probability distribution of a cell to be damaged a certain 
amount. The measured distribution is the convolution of 
distributions from radiation responses, measurement noise, 
and manufacturing parameters. A method of extracting device 
characteristics and parameters from measured distributions via 
mathematical and image subtraction techniques is described.  
 
I. INTRODUCTION 

VLSI devices will exhibit a response to radiation on a 
cell level [1]-[5]. That is, individual cells in a device will 
exhibit a total ionizing dose (TID) and/or a displacement 
damage response. DRAMs, SRAMs, floating gate devices 
such as EPROMs and Flash memories, and ASICs have all 
demonstrated a change in a measurable quantity. DRAMs 
show a change in retention time [4]. SRAMs exhibit a change 
in minimum operating voltage [1]. EPROMs and Flash 
memories demonstrate a shift in programming and erasure 
charge [5]. In the older (large feature size) technologies, dose 
coverage is effectively uniform and identical radiation 
exposures applied to identical devices produce nearly identical 
results. In contrast, the individual cells in a device of VLSI or 
greater density (the subject of interest here) can show varied 
responses to the same irradiation exposure. For a radiation 
source like gamma or electrons, the radiation response of 
identical cells may be tightly grouped because the dose 
coverage is effectively uniform even when viewed on a small 
scale [1]-[3]. Localized radiation, like protons and heavy ions, 
will cause more variance in the radiation responses [4], [5]. In 
the latter case, the device response is plotted either as a 
histogram or a probability distribution, showing the relative 
frequency of cells damaged to that magnitude. Such a plot, 
whether it be a histogram or a normalized probability 
distribution, will be called a radiation response curve. 

The issue of how dose distributes across an array of 
sensitive cells has been an issue for several different types of 
systems.  Extracting and determining the parameters that 
influence the dose distribution has been a major focus [1], [4], 
[6]-[8].  The extraction of device parameters from distributions 
of microdose damage across substrates has been described [6].  
Hard errors in memories are described by changes in damage 
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distributions in [7].  Methods have also been employed to 
directly measure the spatial distribution of dose [8]. 

This paper shows how the radiation response curve 
can be equated to two numerical parameters that can be used 
to quantify the susceptibility of the cells to radiation damage. 
The parameters are also determinations of the physical 
parameters governing the interaction of radiation across the 
device.  Given a radiation response curve, the two 
susceptibility parameters can be extracted. Conversely, if the 
two parameters are given, a radiation response curve can be 
predicted. These parameters are directly related to the 
physical characteristics of a device and damage mechanisms, 
so deconvolving a curve using these parameters can add 
insight regarding physical mechanisms. These parameters 
depend not only on device characteristics, but also on the 
type of irradiation (e.g., protons versus heavy ions), so 
comparing these parameters can compare different irradiation 
types to each other. 

The theory applies to any measure of damage that 
has the additive property.  The additive property means that 
the measure of damage in a cell, accumulated from multiple 
particle hits, is the sum of the damage measures from each 
hit.  The dark current in a device that responds to 
displacement damage is an example of such a measure of 
damage. Each carrier generation site created by a particle hit 
makes an additive contribution to the dark current, and the 
dark current from the collection of sites created by one 
particle hit is added to the dark current from the collection of 
sites created by another hit.  In this study, the total amount of 
fluence is low, so the damage to the device does not saturate 
and therefore the additive property applies.  To emphasize the 
generality of the theory, the generic term “damage” will be 
used throughout this paper.  The type of damage is arbitrary, 
and the units that it is expressed in are arbitrary, providing 
that it has the additive property [9]. 
 
II. IMAGE SUBTRACTION 

An instrumentation readout of a measure of damage 
will be called the “signal.” For example, if the damage is 
measured by the dark current in a cell but the instrumentation 
reports this as a number of mV, this number is the signal. 
Several sources contribute to the cell-to-cell variations in the 
measured signal. In addition to a distribution of radiation 
responses, there is also a distribution due to the variance of 
manufacturing parameters across the die of the device. We 
will call this the original distribution. A third contribution is 
the variance of the noise distribution inherent in the 
measurement techniques [10]. Each contribution adds another 
dimension to the analytical complexity, so it is desirable to 
eliminate as many as possible. The noise distribution is 
included in the analysis but the original distribution is not. 
Instead, it is removed from the measured data via the image 
subtraction method (explained below). In addition to 
analytical complexity considerations, another motivation for 
using image subtraction instead of other methods (such as 
mathematical de-convolution) is sensitivity. Image 
subtraction can resolve a radiation response from the original 
distribution with high precision even if the cell-to-cell 
variation associated with the original distribution is large 
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enough to completely mask the radiation response when other 
methods are used. Image subtraction is the process of 
analyzing the change in signal at every spatial point on an 
image. Previous studies have called the result of image 
subtraction the “shift spectrum” [1]. If the signal of each cell is 
measured prior to irradiation, and then measured again after 
irradiation, the signal difference at every cell can be calculated 
and the resulting distribution will be the convolution of the 
radiation response distribution and the noise distribution. If the 
second measurement was done without irradiation, i.e., if two 
measurements are made prior to irradiation, the resulting 
image subtraction distribution will be the noise distribution.  It 
is important to note that the analysis in this study relies on the 
noise distribution not changing with irradiation.  If the noise is 
radiation dependent, then the formalism can be expanded as 
long as the noise distribution is well known. 

 
III. EXPERIMENTAL DATA 

The theoretical model discussed in later sections will 
be compared to experimental data. The data are discussed 
now, before the model, because this discussion also explains 
how the data should be processed and presented for 
comparison with the model. 

The devices used in this study were Active Pixel 
Sensor (APS) imagers fabricated from a JPL design. The 
imaging array consisted of a 512 by 512 array of 3T active 
pixel sensors. The CMOS devices were built on a 0.6 µm HP 
process. This device is completely digital, so the signal from 
each APS imager cell is reported digitally on the output pins. 
This allows for temperature compensation of dark current. The 
peripheral circuitry sets integration time and data is clocked 
out synchronously with a clock input. For this study, a PC 
interrogated the device using a LABVIEW based code. The 
pixel size is 12 um by 12 um with a fill factor of 44%. The full 
well capacity is 2.4x10-14 C. The output range is 1.63V. The 
charge collection gain is the ratio of output voltage to charge 
collected and is 4.2 uV/e at the photodiode. The ADC consists 
of a radiation hardened 10 bit 225 kHz device. The maximum 
data acquisition rate is 20 Mpixels/s. Therefore, the minimum 
integration time is equal to the frame read time or 300ms. 

For this experiment, the biased device was irradiated  
with 60 MeV protons supplied by the Crocker Nuclear 
Laboratory. All irradiations occurred at normal incidence. The 
fixed pattern noise (FPN) and the dark current were measured 
between irradiation steps. The supply current and other CMOS 
parameters were monitored to ensure integrity of the read out 
circuitry. Two different integration times were also set to 
measure dependence on the integration time. The operating 
bias was set to 5 volts and the operating temperature was held 
at  -25 °C throughout the study.  Previous work has shown that 
the CMOS structures on the APS are very resistant to radiation 
and the diode contributes the most to the change in dark 
current [11]. 

To establish a baseline response of the device, two  
dark current distributions were measured prior to irradiation. 
The histograms are plotted in Fig. 1. Both plots were readouts 
measured from the same virgin chip at different times. The 
abscissa of Fig. 1 is the dark rate at which each cell in the APS 
imager reports when read. The ordinate of Fig. 1 is the number 

of cells that report that dark rate. Each distribution is the 
convolution of the original distribution and the noise 
distribution. The original distribution should be identical for 
the two measurements, but the noise distribution is not. The 
result is that the two measured distributions are very similar 
but not identical. Image subtraction was used for a precise 
determination of the noise distribution and the result is shown 
in Fig. 2. The non-zero mean of this distribution is typical of 
offset in the ADC of this device. 

The device was then irradiated with protons.  The 
raw readout is shown in Fig. 3.  Note that the first irradiation 
is nearly identical to the baseline except for some outliers.  
The mean dark current and width of the distributions 
increase, but only slightly.  The analysis of this study extracts 
the behavior of the radiation interactions.  After each 
irradiation step, the signal distribution was measured and 
image subtraction was used to remove the original 
distribution. Readout 1 was used to subtract out, but readout 
2 could be used with no change to the outcome. The resulting 
histograms are plotted in Fig. 4a. Each distribution is the 
convolution of the radiation response distribution and the 
noise distribution. The figure shows that the distribution gets 
wider and the mean shifts higher with increasing dose. This is 
typical of microdosimetric response in cell arrays [1]-[5].  
The noise distribution was not affected by the irradiations, 
i.e., the image subtraction noise spectrum between 
irradiations levels was essentially identical to Fig. 2 and Fig. 
2 applies to all readouts and deconvolutions. 

In addition to removing the original distribution, 
image subtraction can also be used to remove prior irradiation 
distributions. Figure 4b depicts the image subtraction of two 
consecutive irradiations, which is the convolution of the 
incremental irradiation and the noise.  Now the fact that the 
image subtraction spectra for each incremental dose are not 
identical indicates that the sensitivity of the APS cells change 
with dose.  The distributions are wider as dose increases, 
which imply that the cells are more sensitive to damage as 
dose increases.  This effect has been seen in the literature 
[12]-[15].  The measurement of the change in the sensitivity 
of device parameters is a primary focus of this study. 

The vertical scales in the histograms in Figs. 2 and 4 
depend on the arbitrarily selected signal bin size. This 
dependence can be removed by renormalizing the histograms 
so that the integral of each is 1. This normalization converts 
each histogram in Fig. 4a into a probability density and the 
results are shown in Fig. 5. The horizontal axis in the figure 
is an adjusted dark signal obtained by offsetting the original 
axis by the amount needed to center the noise distribution at 
zero signal.  This compensates for the offset in the ADC of 
the device. 

 
IV. CROSS SECTION FOR INCREMENTAL DAMAGE 

Having presented the experimental data in Fig. 4, 
the next task is to derive a model that can be compared to the 
data. Note that cumulative damage reflects two kinds of 
statistics. One describes the number of particle hits (some 
cells can be hit by more particles than other cells), and the 
other describes the damage produced by a single hit (some 
particle hits may be more damaging than other hits within the 
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same cell, for reasons explained below). Both kinds of 
statistics can be derived from a single function, which is the 
cross section for the incremental damage to exceed a specified 
value. “Incremental damage” is defined to be the damage 
created by a single particle hit, so it is a single event effect. 
Different hits can produce different amounts of incremental 
damage for any combination of several reasons. One possible 
reason is that cell sensitivity depends on the location at which 
damage is created, so some hit locations are more damaging 
than other hit locations within the same cell. Another possible 
reason is that damage is caused by collision reactions that are 
described statistically, i.e., some hits produce a given reaction 
while others do not. Whatever the reason, incremental damage 
is a single event effect that can be described by a cross section 
σ(DI), which is associated with an individual cell and is the 
cross section for the incremental damage to exceed a specified 
value DI. Note that the cross section depends not only on the 
selected level of damage, but also on the type (species and 
energy) of incident particles that the device is exposed. The 
notation does not display this dependence because the particle 
type is held fixed throughout the analysis.  

This cross section could be experimentally defined if 
it is possible to record the incremental damage in each cell 
each time an increment of damage is created. In the absence of 
an actual experiment, the concept of a cross section can still be 
made clear by referring to a thought experiment. In this 
thought experiment, incremental damage is measured in a 
selected cell each time an increment of damage is created. We 
select a value for DI, expose the cell to some fluence F, and 
count the number of times in which a single particle hit created 
a damage exceeding DI (the fluence must be large enough to 
make this count large enough for good counting statistics). 
The cross section is this count divided by F. 

The experimental definition of σ(DI) is generic, i.e., 
does not depend on the physical mechanisms by which 
damage is created, but the physical interpretation of σ(DI) 
does depend on such mechanisms. For illustration, consider a 
device (hypothetical if not real) in which damage is created by 
charge liberated by direct ionization by the incident particle. 
Neglecting statistical variations in the amount of liberated 
charge from different particle hits, the damage may still 
depend on the location within the cell at which the charge is 
liberated. In this case, the cross section σ(DI) is the area of that 
portion of the cell in which the fixed liberated charge produces 
a damage exceeding DI. For another illustration, consider a 
device (hypothetical if not real) in which the sensitive area of 
each cell is a single number in the sense that the cell sensitivity 
is spatially uniform within this area. Damage is created, in this 
example, by collision reactions that produce displacements. 
Displacement clusters are described statistically because some 
can be larger (more damaging) than others. In this case, the 
cross section σ(DI) is the sensitive area multiplied by the 
probability of producing a displacement cluster that is large 
enough to produce a damage exceeding DI. 

Given that the damage measure has the additive 
property, the cross section for incremental damage implicitly 
contains all information regarding device susceptibility 
whether expressed as a function of incremental damage or 
cumulative damage. Numerical parameters that measure 

device susceptibility are obtained by fitting the cross section 
with a function containing adjustable parameters that are 
selected for a best fit. The fit selected for this analysis is 
given by 

IDB
I eAD −=)(σ             (1) 

where A and B are constants.  These constants are the 
parameters that describe device susceptibility.  A and B can 
be functions of F, but for this analysis the variation with F is 
negligible.  If the actual cross section on the left does not 
have the functional form indicated on the right, it is still 
possible to define A and B parameters for any given cross 
section by stipulating that they be selected for a best fit. The 
A parameter is the saturation value of the cross section. The B 
parameter has two interpretations. One interpretation 
obtained directly from (1) is B=1/DI,1/e, where DI,1/e is that 
value of incremental damage at which the cross section is 1/e 
times the saturation value. A second interpretation is obtained 
by using (1) to evaluate the integrals to obtain 

∫

∫
∞

∞

=

0

0

)(

)(1

II

III

dDD

dDDD

B σ

σ
 

which can also be written as 
AVGIDB ,/1=              (2a) 

where 

.
)(

)(

0

0
,

∫

∫
∞

∞

≡
II

III
AVGI

dDD

dDDD
D

σ

σ
       (2b) 

Note that DI,AVG defined by (2b) is the weighted average 
incremental damage, weighted by the cross section. This is 
also a conditional statistical average; the average (over 
particle hits) incremental damage, given that the cell was hit. 
Stated another way, it is the average incremental (or per hit) 
damage that averages over a large random sampling of 
particles that hit the selected cell (particles that miss the cell 
do not add to the damage but also do not contribute to the 
sample size). This type of average, which averages over 
particles, is distinguished from another type of average that 
averages over cells. For example, the number of hits can be 
averaged over cells. The average number of hits from a 
fluence F is AF, and the average number of hits that produce 
an incremental damage that exceeds DI is σ(DI)F. 
 
V. MODEL PREDICTIONS 
 Appendix A shows how the cross section for 
incremental damage is used to construct a probability 
distribution for cumulative damage. The appendix also shows 
how the latter distribution is combined with a noise 
distribution to obtain the measured probability distribution, 
denoted here as ρM. The final results from the appendix are 
summarized here, without the derivations, in the form of a 
plotting protocol. This protocol plots model predictions in the 
format of Fig. 5, i.e., different curves correspond to different 
fluences and each curve plots ρM as a function of D. The 
protocol requires numerical values for the A and B 
parameters. If the objective is to fit an existing curve, for 
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which these parameters are not known in advance, trial values 
are assigned. The best values are those that produce the best 
fit. The equations indicated in the protocol are in Appendix A. 
The protocol is as follows: 
 
Step 1: It is assumed that the noise distribution has already 
been measured. Assign a numerical value to the parameter C 
in (14). 
Step 2: Assign numerical values to the parameters A and B. 
Step 3: Different curves are characterized by different values 
of F. Select a particular curve by assigning a numerical value 
to F. 
Step 4: Calculate µρ from (13a) and then Sρ2 from (13b). 
Step 5: Calculate K1 and then K2 from (19). 
Step 6: Select an entry from the table in Appendix B. Each 
entry produces another point to be plotted. Use the selected 
entry to assign numerical values to z and G. 
Step 7: Calculate D′ from D′=z2/(ABF). Then calculate D from 
D=(D′−K2)/K1. 
 Step 8: Calculate ρN(D) from (14) and then calculate ρM from 
(18a). Plot the point (D, ρM). 
Step 9: Repeat Steps 6 through 8 for additional points on the 
selected F curve. 
 The above protocol was used to obtain curves to be 
compared to those in Fig. 5. In Step 1, setting the amplitude C 
of the fitting function equal to the peak value (0.7/mV) of the 
measured noise curve gives an excellent fit. Trial values were 
assigned in Step 2 and those that gave adequate fits to the 
measured curves in Fig. 5 were recorded. The results are 
shown in Fig. 6. The first irradiation, irrad 1, was not 
sufficiently distinctive from noise to successfully extract the A 
and B parameters.  That is, when noise is deconvolved from 
the irrad 1 data set, the result was too slight to give a precise 
value for A and B.  This inability sets the lower bound of the 
method, which is the signal distribution must be appreciably 
above the noise distribution.  The A and B parameters are 
indicated in each plot and compared in Table I. 
 
Table I: Extracted parameters from deconvolution 

Fluence 
[1/cm2] 

A  [cm2] B  [1/mV] 

5.0×1010 1.4×10-10 3.4 
7.5×1010 1.9×10-10 3.4 
12.5×1010 2.4×10-10 3.4 

 
The parameter A increases with dose while the 

parameter B does not change with dose.  It was expected from 
the analysis of Fig. 4b that one of the parameters A or B would 
change with dose.  As can be seen from Table 1, the change in 
A is small with dose.  This variation is judged to be small 
enough to conclude that the model is in reasonable agreement 
with the data.  Good fits are obtained by using a common B for 
all plots but there is some variation in A from one plot to the 
next. 
 
VI. DISCUSSION 

The model and techniques discussed here allows us to 
estimate two device parameters that would otherwise be 

obscured in measured data containing noise and an original 
distribution in addition to a radiation response distribution. 
One parameter is the average per-hit damage (averaged over 
particle hits), which is 1/B. From Fig. 6 or Table I we 
estimate this to be about 0.3 mV for the example considered. 
The other parameter is the effective sensitive area of a cell, 
which is A. The term “effective” is used because a physical 
area might be multiplied by a collision reaction probability if 
collision reactions produce the damage (displacement 
damage). If the damage is caused by direct ionization from 
the incident particle (micro-dose), A is expected to be some 
physical area. The exact value of A depends on which plot is 
selected from Fig. 6, but in any case it is between 0.01 and 
0.03 µm2 for the example considered. This is very much 
smaller than a pixel area (12µm×12µm with a 44% fill 
factor), suggesting that the damage was caused by collision 
reactions. 

The credibility of the above assertion can be tested 
by comparing the values of A in Table I to an estimate 
obtained from an independent analysis derived from the 
stated assertion. This analysis follows earlier work by Srour 
et al. [9]. Those authors found that leakage currents produced 
by displacement damage are quantized, so the occurrence or 
nonoccurrence of detectable damage is unambiguous. Each 
silicon atom in the sensitive volume has a cross section for a 
collision that ultimately leads to detectable damage. The 
cross section used in [9] for 99 MeV protons was 4.2 barns 
(4.2×10-24 cm2). The same per-atom cross section is used 
here for 60 MeV protons for order-of-magnitude estimates. 
The parameter A is the cell cross section for obtaining any 
amount of detectable damage and is the above per-atom cross 
section multiplied by the number of silicon atoms in the 
sensitive volume. The area of the volume is 
0.44×12µm×12µm and the depth (depletion region thickness 
of a fully depleted pixel) is 10 µm, giving a volume of 
6.3×10-10 cm3. Multiplying by 5×1022 atoms/cm3 and then 
multiplying by the per-atom cross section produces the 
estimate A≈1.3×10-10 cm2. This order-of-magnitude estimate 
agrees with the values listed in Table I, so the assertion that 
damage is caused by collision reactions is consistent with the 
measured data.  

This approach relied on several assumptions with 
the main ones being 1) single species of radiation, 2) the 
additive property of radiation damage, 3) constant noise 
distribution with irradiation, and 4) no saturation of damage.  
The experiment data presented in this study obey these 
restrictions.  If any of these restrictions were relaxed, the 
formalism may be expanded.  Multiple species of radiation 
would require the condition specified in (1) to be recast to 
include an A and sigma term for each radiation type, as well 
as fluence variable, F, for each radiation species in the 
derivation shown in appendix A.  Non-linear radiation 
response can be included in the formalism as long as the 
damage per ion hit function is known and mathematically 
well behaved.  If the noise distribution changes with 
irradiation, the deconvolution can still proceed as long as the 
radiation dependence of the noise is known. The formalism 
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can also be modified if the damage a cell can exhibit saturates. 
 
VII. CONCLUSIONS 

The response distribution of an array to radiation can 
be determined using a mathematical model combined with 
image subtraction. Device and radiation effect parameters can 
be extracted by using this method. In particular, image 
subtraction has sufficient resolution to produce the curves in 
Fig. 5 in spite of the large spread in the original histograms 
such as shown in Figs. 1 or 3. Furthermore, applying the 
mathematical model to Fig. 5 leads to the conclusion that the 
data are consistent with the assertion that damage is caused by 
collision reactions (displacement damage). 
 
APPENDIX A: DERIVATION 
A. Radiation Response 
 We start with the radiation response alone, i.e., noise 
is not included in this part of the analysis. Let P(D,F) denote 
the probability that a selected cell will receive a cumulative 
(i.e., summed over particle hits) damage D when exposed to a 
fluence F. The term “exceeds” is a strict inequality, so P(0,F) 
is not 1. Instead, it is the probability that the cell was hit 
somewhere at least once. The cross section for incremental 
damage is given by (1) with a saturation value equal to A, so 
the probability that the cell was hit somewhere (i.e., the area A 
was hit) one or more times is given (via Poisson statistics) by 

.1),0( FAeFP −−=            (3a) 
There is zero probability that the damage will exceed zero or 
any larger value if the fluence is zero, so another boundary 
condition is 

.0)0,( =DP             (3b) 
The two boundary conditions in (3) join continuously at the 
point D=0, F=0, so P(D,F) will be a smooth function. This is 
the motivation for interpreting “exceeds” as a strict inequality; 
to make P(D,F) a smooth function. The penalty is that P(D,F) 
does not satisfy the traditional normalization condition (i.e., 
P(0,F)≠1) because it does not include all possibilities. It does 
not include the possibility of no hits, which has a probability 
of 1−P(0,F)=e−AF, so this possibility has to be included as a 
separate term in the analysis. 
 An equation governing P(D,F) can be derived by 
selecting a fluence value F and an additional fluence 
increment ∆F. The probability P(D,F+∆F) can be expressed in 
terms of conditional probabilities according to 
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where the symbols are explained below. The square bracket on 
the right side of (4) is the probability of zero damage (no hits) 
when the fluence is F, and the term that multiplies it is a 
conditional probability; the probability that the damage will 
exceed D when the fluence is F+∆F, given that there was no 
damage when the fluence was F. The term ρ(D′,F) is the 
probability density for the damage to be D′ when the fluence is 
F, and the term that multiplies it is a conditional probability; 
the probability that the damage will exceed D when the 
fluence is F+∆F, given that the damage was exactly D′ when 

the fluence was F. The square bracket is e−AF, and ρ is given 
by 
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Elementary probability theory can calculate the two 
conditional probabilities to first order in ∆F (i.e., in the limit 
of small ∆F) in terms of the cross section for incremental 
damage, and the results are 
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Dividing by ∆F and taking the limit as ∆F →0 gives 
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This equation can be expressed in terms of ρ defined by (5) 
by differentiating to get 
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where σdiff is the differential cross section defined by 
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The equation governing ρ is put in its final form by 
combining (1) with (6) and (7) to get 
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Expressing the boundary conditions (3) in terms of ρ gives 
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The solution to (8) and (9) is 
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which can be verified by substituting the proposed solution 
into (8) and (9). It is convenient to define the function G by 
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so (10) can be written as 

.)(),(
2)( FDBAGeFBAFD FADB −−=ρ  (12) 

This is more convenient than (10) because G varies much 
more slowly than the series in (10), so a tabulation of G can 
be prepared in advance and then interpolated for each 
application. A tabulation is given in Appendix B. For the 
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benefit of readers that want to make their own tables, some 
properties of the series in (11) are stated here without proof. If 
the infinite series is approximated by summing all terms up to 
some finite number of terms, the relative (or fractional) error is 
bounded by the first omitted term. For example, an error of not 
greater than 1% is insured if the terms are summed until the 
first encounter of a term that is less than 0.01. Numerical 
problems (computer overflow) can occur if z is very large but 
an asymptotic expression can be used for such cases. This is 

) large(
2

1)( z
zz

zG
π

→  

which gives three-digit accuracy when z=300, with better 
accuracy at larger z. The series (11) is recommended for 
z<300. 
 Using (10) to evaluate the required integrals will 
show that the mean of ρ, denoted µρ, and variance of ρ, 
denoted Sρ2, are given by 
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B. Noise 
 The radiation response probability density ρ is now 
combined with a noise probability density denoted ρN to obtain 
a measured probability density denoted ρM. The noise 
distribution is fit with a Gaussian function given by 

22
)( DC

N eCD πρ −=           (14) 
where C is a constant. The required normalization is built into 
(14), so there is only one adjustable fitting parameter C, which 
was arbitrarily selected to be the amplitude. The mean and 
variance of ρ are denoted µN and SN

2 (respectively) and are 
given by 

.)2/(1,0 22 CSNN πµ ==         (15) 
 

By starting with conditional probabilities in analogy 
with (4) we can obtain 

)(),( DeFD N
FA

M ρρ −=  

.')'(
1

),'(]1[ 0∫
∞

−
− −

−
−+ dDDD

e
FDe NFA

FA ρ
ρ   (16) 

The square bracket was factored out of the integral in (16) so 
that the integral will be the convolution between two 
distributions that are normalized in the traditional way. The 
integral can be evaluated exactly but the result is extremely 
messy. An alternative is to replace the integral with an 
approximation. Assuming that the fluence F is large enough to 
make the radiation distribution clearly distinguishable from the 
noise distribution, the noise distribution is treated as a small 

perturbation in the sense that the ρN in the integral is a narrow 
pulse. The convolution will then resemble the distribution 
ρ/[1−e−AF], but slightly altered to have the increased spread or 
variance created by the noise. We therefore use the 
approximation 

FANFA e
FKDKKdDDD
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FD
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1
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1
),'( 211

0
ρ

ρ
ρ  

(17) 
where the constants K1 and K2 are selected for a best fit, as 
discussed later. Using (17) together with (12), we can write 
(16) as 

)(),( DeFD N
FA

M ρρ −≈  

)(
2)'(

1 zGeFBAK FADB −−+  (18a) 
where 

.',' 21 FDBAzKDKD ≡+≡     (18b) 
There still remains the task of selecting K1 and K2. 

The objective is to make the right side of (17) have the same 
normalization, mean, and variance as the left side. The left 
side is the convolution between two normalized distributions, 
and a well-known property of such a convolution is that it is 
normalized, has a mean equal to the sum of the two means 
(µρ+µN=µρ), and has a variance equal to the sum of the two 
variances (Sρ2+SN

2= Sρ2+1/(2πC2)). The right side of (17) 
already has the required normalization, so K1 and K2 are 
selected to give the right side a mean equal to µρ and a 
variance equal to Sρ2+1/(2πC2). It is easy to show that the 
required values are given by 

.)1(,
)2/(1

12

2/1

22
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APPENDIX B: TABULATION OF G 
z G(z) z G(z) 
0 1 9.0 1.023e-2 
0.02 9.610e-1 9.5 9.441e-3 
0.04 9.239e-1 10 8.751e-3 
0.06 8.885e-1 11 7.599e-3 
0.08 8.549e-1 12 6.679e-3 
0.10 8.228e-1 13 5.931e-3 
0.20 6.838e-1 14 5.312e-3 
0.30 5.739e-1 15 4.794e-3 
0.40 4.862e-1 16 4.356e-3 
0.50 4.158e-1 17 3.980e-3 
0.60 3.588e-1 18 3.655e-3 
0.70 3.122e-1 19 3.372e-3 
0.80 2.738e-1 20 3.124e-3 
0.90 2.419e-1 21 2.905e-3 
1.0 2.153e-1 22 2.710e-3 
1.2 1.737e-1 23 2.536e-3 
1.4 1.434e-1 24 2.380e-3 
1.6 1.206e-1 25 2.240e-3 
1.8 1.031e-1 26 2.112e-3 
2.0 8.938e-2 27 1.997e-3 
2.2 7.839e-2 28 1.891e-3 
2.4 6.945e-2 29 1.795e-3 
2.6 6.207e-2 30 1.706e-3 
2.8 5.590e-2 31 1.624e-3 
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3.0 5.068e-2 32 1.549e-3 
3.2 4.623e-2 33 1.480e-3 
3.4 4.238e-2 34 1.415e-3 
3.6 3.904e-2 35 1.355e-3 
3.8 3.611e-2 36 1.299e-3 
4.0 3.354e-2 37 1.247e-3 
4.2 3.125e-2 38 1.198e-3 
4.4 2.921e-2 39 1.153e-3 
4.6 2.738e-2 40 1.110e-3 
4.8 2.574e-2 41 1.070e-3 
5.0 2.425e-2 42 1.032e-3 
5.2 2.290e-2 43 9.961e-4 
5.4 2.168e-2 44 9.624e-4 
5.6 2.055e-2 45 9.306e-4 
5.8 1.952e-2 46 9.005e-4 
6.0 1.858e-2 47 8.720e-4 
6.2 1.771e-2 48 8.449e-4 
6.4 1.690e-2 49 8.193e-4 
6.6 1.615e-2 50 7.949e-4 
6.8 1.549e-2 60 6.051e-4 
7.0 1.481e-2 75 4.332e-4 
7.2 1.421e-2 94 3.089e-4 
7.4 1.365e-2 120 2.143e-4 
7.6 1.312e-2 150 1.534e-4 
7.8 1.263e-2 190 1.076e-4 
8.0 1.217e-2 240 7.581e-5 
8.5 1.113e-2 300 5.426e-5 
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Fig. 1. Original distribution of dark signal across the APS imager for two 
readouts of virgin devices.  
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Fig. 2. Image subtraction, or shift spectra, showing the noise distribution.  
The noise distribution was not seen to change after irradiation. 
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Fig. 3. Raw data as readout form the APS.  
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Fig. 4a. Histograms showing the damage distributions after each of several 
proton irradiations. Image subtraction removed the original distribution so 
each of the above are convolutions of the radiation response distributions with 
the noise distribution. 
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Fig. 4b. Histograms showing the damage distributions between each of 
several proton irradiations. Image subtraction is used to compare the damage 
for each dosing.  
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Fig. 5. A renormalization applied to the histograms in Figs. 2 and 3a 
produces the probability densities shown. The adjusted dark signal 
compensates for the offset in the ADC.  
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Fig. 6a. The model is compared to data obtained after the second irradiation 
(5.0E10 protons/cm2). 
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Fig. 6b. The model is compared to data obtained after the third irradiation 
(7.5E10 protons/cm2). 
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Fig. 6c. The model is compared to data obtained after the fourth irradiation 
(12.5E10 protons/cm2). 
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